Additional WR Question 1:

The graphs of two functions, $f(x)$ and $g(x)$, are shown on the right.
Three new functions, $j(x), k(x)$, and $h(x)$, are defined by:

$$
\begin{aligned}
& j(x)=(f \circ g)(x) \\
& k(x)=\frac{f(x)}{g(x)} \\
& \text { and } h(x)=g(x)-f(x)
\end{aligned}
$$

Written Response-5 marks

1. a. Determine which function, $j(x)$ or $k(x)$, has the larger value when $x=0$. [2 marks]
b. Sketch the graph of $h(x)$ on the coordinate plane provided below. Identify the coordinates of the y-intercept, and state the domain of the function. [3 marks]

Coordinates of the y-intercept: \qquad

Domain:

Additional WR Question 2:

Written Response-5 marks
2. a. Algebraically solve the equation $\sec ^{2} \theta+\sec \theta=2$, where $2 \pi \leq \theta \leq 3 \pi$. State the solution as exact values. [3 marks]

Use the following information to answer the next part of the written-response question.

Points A, B, and C are on the terminal arms of angles drawn in standard position, as shown below. These angles are the solutions for θ to a single trigonometric equation.

b. State the general solution for this equation. [2 marks]

Use the following information to answer written-response question 3.

Students in a math class are creating and exchanging encoded messages with a partner.

Written Response-5 marks

3. a. Given that 630 different pairs of students are possible, algebraically determine the number of students in the math class. [3 marks]

Use the following information to answer the next part of the written-response question.
A student is asked to encode the word FACTOR by replacing each letter of the word with a different math symbol. There are 10 math symbols available. The student creates a key, a list of his letter-symbol replacements, and gives it to his partner to use to decode the word.
b. Explain how you would determine the number of different keys that can be created for the word FACTOR, and determine the number of possible keys using your strategy.
[2 marks]

Additional WR Question 4:

Use the following information to answer part (a) of Question 4:
The graph of $h(x)=x^{2}$ is transformed into the graph of $y=g(x)$, whose equation can be written in the form $g(x)=a(x-h)^{2}+k$.

The graph of $y=\sqrt{g(x)}$, shown on the right, has a maximum at the point $(5,4)$.

Written Response-5 Marks

a. Sketch the graph of $y=g(x)$ on the grid provided below, and clearly label the x-intercepts and maximum. Describe one possible sequence of transformations that could be applied to the graph of $y=h(x)$ to produce the graph of $y=g(x)$. [3 marks]

Use the following information to answer part (b) of Question 4:
The graph of the quadratic function $y=f(x)$ is transformed to create the graph of $x=f(y)$. The graphs of $y=f(x)$ and $x=f(y)$ and 10 labelled points are shown below.

b. Identify the invariant points and explain why they are invariant. [2 marks]

Use the following information to answer part (a) of Question 5:

The graph of $y=f(x)$ and the equation of $y=g(x)$ are shown on the right

$$
g(x)=\frac{x+3}{x-2}
$$

Written Response-5 marks

a. Compare the intercepts, equations of the asymptotes, and domains of $y=f(x)$ and $y=g(x)$. [3 marks]

Use the following information to answer part (b) of Question 5:
Betty is creating the function $h(x)=\frac{(x-a)(x-b)}{(x-c)}$ using the following values for a, b, and c :

$$
\begin{array}{lllllllll}
-3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

Betty would like the graph of the function to have a vertical asymptote and two distinct x-intercepts, one of which is negative. She may use the provided values more than once.
b. Provide an example of an equation Betty could use to represent the function, and determine the total number of different graphs that would meet Betty's criteria. [2 marks]

Additional WR Question 6:

Written Response-5 Marks
a. Determine the value of Angle θ in standard position such that $\csc \theta=-\sqrt{2}$, where $540^{\circ} \leq \theta \leq 630^{\circ}$. Sketch and label Angle θ in standard position on the Cartesian plane below. [2 marks]
$\theta=$ \qquad

Use the following information to answer part (b) of Question 6:
The terminal arm of Angle β intersects the unit circle at Point $P\left(m,-\frac{\sqrt{3}}{4}\right)$, where $\sec \beta>0$.
b. Algebraically determine the exact value of $\cos \left(\beta+\frac{\pi}{6}\right)$ in the form $\frac{\sqrt{a}+\sqrt{b}}{c}$, where $a, b, c \in N$. [3 marks]

Question 1: \quad Part (a)

$j(x)=(f \circ g)(x)$

$$
k(x)=\frac{f(x)}{g(x)}
$$

$j(x)=(f(g(x)))$
$k(0)=\frac{f(0)}{g(0)}$
$j(0)=(f(g(0)))$
$k(0)=\frac{-2}{-3}$
$j(0)=f(-3)$
$k(0)=\frac{2}{3}$
$j(0)=1$
The value of $j(x)$ is larger than the value of $k(x)$ when $x=0$.

Coordinates of the y-intercept: $(0,-1)$
Domain: $D:\{x \mid-4 \leq x \leq 0, x \in R\}$ or $[-4,0]$
Note: The domain can be written in either full set notation or interval notation. The y-intercept must be written as an ordered pair to receive full marks.
-

\boldsymbol{x}	$g(x)$	$f(x)$	$g(x)-f(x)$	(x, y)
-4	5	-2	7	$(-4,7)$
-3	0	1	-1	$(-3,-1)$
-2	-3	2	-5	$(-2,-5)$
-1	-4	1	-5	$(-1,-5)$
0	-3	-2	-1	$(0,-1)$

Question 2: \quad Part (a)

$$
\begin{gathered}
\sec ^{2} \theta+\sec \theta-2=0 \\
(\sec \theta+2)(\sec \theta-1)=0 \\
\downarrow \\
\downarrow
\end{gathered}
$$

Therefore, $\sec \theta+2=0$ or $\sec \theta-1=0$

$$
\begin{aligned}
& \sec \theta=-2 \text { or } \sec \theta=1 \\
& \cos \theta=-\frac{1}{2} \text { or } \cos \theta=1 \\
& \theta=\frac{2 \pi}{3}, \frac{4 \pi}{3} \text { or } \theta=0
\end{aligned}
$$

In the domain $2 \pi \leq \theta \leq 3 \pi$,

$$
\theta=\frac{2 \pi}{3}+2 \pi \text { and } \theta=0+2 \pi
$$

$$
\theta=\frac{8 \pi}{3} \quad \text { and } \theta=2 \pi
$$

$$
\text { The solutions are } \theta=2 \pi \text { and } \theta=\frac{8 \pi}{3} \text {. }
$$

Part (b)

The three points are on the terminal arms of $\theta=\frac{3 \pi}{4}, \pi$ and $\frac{7 \pi}{4}$.
These angles represent
the solutions to the equation in the domain $0 \leq \theta \leq 2 \pi$.

As $\frac{3 \pi}{4}$ and $\frac{7 \pi}{4}$ have a difference of π, the general solution is:
$\theta=\frac{3 \pi}{4}+n \pi, \quad \theta=\pi+2 n \pi, n \in I$

Note: The general solution can be written as three separate statements.

Question 3: \quad Part (a)

$$
\begin{aligned}
{ }_{n} \mathrm{C}_{2} & =630 \\
\frac{n!}{(n-2)!2!} & =630 \\
\frac{n(n-1)(n-2)!}{(n-2)!2!} & =630 \\
\frac{n(n-1)}{2} & =630 \\
n(n-1) & =1260 \\
n^{2}-n-1260 & =0 \\
(n-36)(n+35) & =0 \quad \begin{array}{l}
\text { It is not possible to have a negative } \\
\text { number of students }
\end{array} \\
n=36 \text { and } n & =-35 \quad \begin{array}{l}
\text { So } n=-35 \text { is extraneous. } \\
\text { There are } 36 \text { students in the class }
\end{array}
\end{aligned}
$$

Part (b)

Possible Solution 1: Fundamental counting principle - there are 10 symbols available for the F, 9 symbols for the A, and so on...

$$
\frac{10}{\mathrm{~F}} \cdot \frac{9}{\mathrm{~A}} \cdot \frac{8}{\mathrm{C}} \cdot \frac{7}{\mathrm{~T}} \cdot \frac{6}{\mathrm{O}} \cdot \frac{5}{\mathrm{R}}=151200
$$

There are 151200 different keys.

Possible Solution 2: Because the symbols will be arranged in a definite order, the problem can be solved using permutations.

$$
{ }_{10} \mathrm{P}_{6}=151200
$$

Possible Solution 3: Because 6 symbols are being chosen from the set of 10 , the first part can be solved using combinations. They must then be assigned to a specific letter in the word using the fundamental counting principle

$$
{ }_{10} \mathrm{C}_{6} \times 6!=151200
$$

Question 4: Part (a)

The graph of $y=g(x)$ will have the same x-intercepts as the graph of $y=\sqrt{g(x)}$ but a maximum point at $(5,16)$.

The graph of $g(x)$ will also extend below the x-axis
A possible equation of $y=g(x)$:
$g(x)=a(x-5)^{2}+16$

$$
0=a(8-5)^{2}+16
$$

$-16=a(3)^{2}$

$$
a=-\frac{16}{9}
$$

$g(x)=-\frac{16}{9}(x-5)^{2}+16$

A sequence of transformations that could be applied
to $y=h(x)$ to result in $y=g(x)$ is

- a vertical stretch about the x-axis by a factor of $\frac{16}{9}$
- a reflection in the x-axis
- a horizontal translation 5 units right
- a vertical translation 16 units up

Part (b)

The invariant points are labelled on the graph as E and J.
First Possible Explanation: The graph of the inverse of a relation can be created by reflecting the graph of $y=f(x)$ in the line $y=x$. Any points on the graph of $y=f(x)$ that intersect with the reflection line $y=x$ would remain unchanged and therefore be invariant.
Second Possible Explanation: When a function is transformed into its inverse relation, the x-coord. of each point becomes the y-coord. of the corresponding point. (and vice-versa) This means that invariant points will only exist when the value of x is equal to the value of y.

Question 5: \quad Part (a)

For $g(x): g(x)=\frac{x+3}{x-2} \rightarrow g(x)=\frac{x-2+5}{x-2} \Rightarrow g(x)=\frac{5}{x-2}+\frac{x-2}{x-2} \Rightarrow g(x)=\frac{5}{x-2}+1$, where $x \neq 2$
The graph of $y=g(x)$, when compared to $y=\frac{1}{x^{\prime}}$, has been translated 1 unit up so the horizontal asymptote is $y=1$.
The vertical asymptote is $x=2$, which means the domain is $\{x \mid x \neq 2, x \in R\}$.

$$
\begin{array}{r|r}
x \text {-intercept: } 0=\frac{x+3}{x-2} & y \text {-intercept: } y=\frac{0+3}{0-2} \\
0=x+3 \rightarrow x=-3 & y=-\frac{3}{2}
\end{array}
$$

The graphs of $y=f(x)$ and $y=g(x)$ have different x - and y-intercepts. The graph of $y=f(x)$ has an x-intercept at $(0,0)$ REMEMBER: and a y-intercept at $(0,0)$. The graph of $y=g(x)$ has an x-intercept at $(-3,0)$ and a y-intercept at $\left(0,-\frac{3}{2}\right)$. \quad Intercepts must be expressed as ordered pairs! Both graphs have a horizontal asymptote at $y=1$ and a vertical asymptote at $x=2$, but the graph of $y=f(x)$ also has a point of discontinuity at $x=3$, meaning the domains will be different. The domain of $y=g(x)$ is $\{x \mid x \neq 2, x \in R\}$ and the domain of $y=f(x)$ is $\{x \mid x \neq 2, x \neq 3, x \in R\}$.

Part (b)

A possible example could be:

$$
h(x)=\frac{(x+2)(x-5)}{(x-3)}
$$

To determine the total number of different graphs:

The value of a or b must be $-3,-2$, or -1 (3 options) while the value of the other parameter must then be $0,1,2,3,4$, or 5 . (6 options)
The value of c cannot be the same as the value of a or b; otherwise, the graph would have a point of discontinuity instead of a vertical asymptote. Therefore, there are 7 remaining unused options for the factor in the denominator.
Using the fundamental counting principle, $3 \times 6 \times 7=\mathbf{1 2 6}$ different graphs would meet Betty's criteria.

Question 6: Part (a)

$\csc \theta=-\sqrt{2}$
$\sin \theta=-\frac{1}{\sqrt{2}}$] NOTE: We recognize this as, $-\frac{\sqrt{2}}{2}$ which we know is associated with a 45° reference angle
The terminal arm is in quadrant III or IV and the reference angle is 45°.
The angle between $540^{\circ} \leq \theta \leq 630^{\circ}$ with a reference angle of 45° is $\theta=585^{\circ}$.

Part (b)

If Point $P\left(m,-\frac{\sqrt{3}}{4}\right)$ intersects the unit circle, then

$$
\begin{aligned}
m^{2}+\left(-\frac{\sqrt{3}}{4}\right)^{2} & =1^{2} \\
m^{2} & =1-\frac{3}{16} \\
m^{2} & =\frac{13}{16} \\
m & = \pm \frac{\sqrt{13}}{4}
\end{aligned}
$$

Because $\sec \beta>0$, Angle β is in quadrant IV and $m=\frac{\sqrt{13}}{4}$.
Therefore, Point P is located at $\left(\frac{\sqrt{13}}{4},-\frac{\sqrt{3}}{4}\right)$ and $\cos \beta=\frac{\sqrt{13}}{4}$ and $\sin \beta=-\frac{\sqrt{3}}{4}$.

So, $\cos \left(\beta+\frac{\pi}{6}\right)=\cos \beta \cos \frac{\pi}{6}-\sin \beta \sin \frac{\pi}{6}$

$$
=\left(\frac{\sqrt{13}}{4}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(-\frac{\sqrt{3}}{4}\right)\left(\frac{1}{2}\right)
$$

$$
=\frac{\sqrt{39}}{8}+\frac{\sqrt{3}}{8}
$$

$$
\cos \left(\beta+\frac{\pi}{6}\right)=\frac{\sqrt{39}+\sqrt{3}}{8}
$$

The exact value of $\cos \left(\beta+\frac{\pi}{6}\right)$ is $\frac{\sqrt{39}+\sqrt{3}}{8}$.

